Charting a Better Course for LOC Training

In my last blog, I talked about the changes to stall training in the new ACS and how they looked when you put them in a hazard reduction precedence sequence in addition to the arguments Rod Machado is making against them. I believe that the best solution to reducing LOC accidents in general aviation is going to be BOTH some new or additional design solutions AND a proper approach to training, which I’m not convinced the new ACS approach affords. Part of the reason is that I believe it is based on standards coming down in the new Part 23 which puts more emphasis on design solutions and warning systems (the weakest of the design controls) and most of the aircraft we fly today simply don’t have those systems. But I also believe that the current training regimen does pilots a disservice because it is only PART of the answer and that the recent gains in Part 121 accident reduction point in the right direction.

In the February 2018 edition of Flying magazine, there’s a great article entitled “Loss of Control: The Persistent Risk” by Rob Mark that discusses what was done and how it contributed to a positive result, quote: “Some 65 safety enhancements appeared on the CAST (Civil Aviation Safety Team) list published in 2007, with 10 of them devoted to loss of control. One specifically called for advanced maneuvering training to “prevent and recover from hazardous flight conditions outside of the normal flight envelope”. It goes on to detail that the ICAO published a manual on Upset Prevention and Recovery Training. All of this points to going in the OPPOSITE direction of the new ACS at least in philosophy if not in actual practice. (As I mentioned in my earlier blog, the new test standards are tied to having equipment in your airplane that most do but is NOT required and may not even exist.)

The other statement in the article I consider especially telling is this one: “Anytime a pilot allows their aircraft to become a sort of airborne tail wagging the dog, a departure from normal flight or loss of control is usually not far behind.” While such an event could be caused by a pilot simply not exercising authority, I believe it often lies more in line with a loss of situational awareness whether due to misplaced focus (which could be from overconfidence, a lack of confidence, or not knowing what to do) or some type of distraction that takes one there. I also believe it is nearly always a precursor to the actual event. If that is true, then the new ACS seems more of a “slight of hand solution” since it emphasizes a reaction to a stall warning in the same environment as we have conducted stall and slow flight training in the past, i.e., a controlled environment in which the pilot knows and is in control of what is happening.

So, let’s talk about what would be a BETTER training approach than our current course, one that fits in with what we know does work and that fits the actual flying environment pilots are operating in.

(1) Pilots need to be taught (and tested) to respond correctly at the first indication of an approach to a stall (which could be a warning system activation or an aerodynamic indication, i.e., buffeting or sluggish control response). That is what the current Private Pilot ACS specifies; the argument seems to be about whether 10 knots away from that is really sufficient…and I’m not convinced you learn or demonstrate much there. Having a pilot demonstrate he can get out of the situation when the stall is nibbling at you is a lot more meaningful. For this ACS standard, you could move the approved speed range to +0 to 5 knots above the stall, though since it’s 0 to 10 the DPE and CFI can still them there. (“0 to 5 ” is probably the region where an asleep pilot is most likely to wake up.)

(2) Continue to train and test pilots in the slow flight (back side of the power curve–everyone needs hit that point in slow flight where more power does nothing–and experience really sluggish control response) through recovery after the stall. If you want to know why, go back to the “Anytime a pilot allows their aircraft to become a sort of airborne tail wagging the dog…” statement. Failure to teach these things plays into that scenario. CFIs and Examiner’s can handle the “desensitization” argument by emphasizing that disregarding any stall warning devices is NOT something you want to do; considering the limited exposure most pilots have to this type of training, I wager this approach would be MORE effective than sticking our heads in the sand and saying “you can’t do nothin'” which is NOT true if there’s enough air underneath you and it demonstrates mastery through the entire regime.

(3) The FAA and the GA alphabet groups can put their heads together and come up with an Upset Prevention and Recovery program that would be the most effective if it was mandatory before or shortly after getting an initial pilot’s rating and every so many years thereafter. Yes, that would be very controversial (like spin training used to be and is now done only for CFI applicants) and I know getting a rating and keeping it is expensive enough, but it all depends on how serious we are about LOC reduction. The use of simulators here (and for recommendation #4, next) can reduce both the risk and cost as well as be effective if the fidelity is good enough.

(4) SAFE and NAFI (as well as other local CFI organizations) and individual CFI’s can take a look at formalizing training scenarios that emphasize conflicting priorities and distraction that put a pilot into near-LOC situations. Yes, this training is already required and we all do it; but have you ever seen any of this formalized? Might be a good idea and will help bring it to the forefront.

Lowering LOC is a goal everyone’s interested in, but especially us CFI’s. Give what I’ve said here some thought, and feel free to let me know what you think of it and bring forward your own ideas.