Understanding Aerodynamics

If you’ve been reading this blog and especially the ones written about aerodynamics and how it’s being taught, you know I feel like there’s a lot of disinformation that’s being taught by people who purport to know better. Understanding aerodynamics is not as easy as it might first appear, and I’ve been re-examining what I know about it and especially wresting with how to write about and teach it. I consider it crucial to teach it at the most basic level I can while keeping it technically correct. I am unhappy to report that many organizations I have approached about incorrect technical educational issues have shown me nothing but apathy. This needs to change, especially in this age of immediate and widespread information dissemination. The Internet is a great thing; but a lot of stuff you see out on it, especially dealing with aerospace education and aerodynamics in particular, is incorrect. It’s one thing to just be wrong; it’s another thing to line your pockets while doing it.

One of the people stepping up to discuss some of this is Doug McLean, a retired aerodynamicist and physicist from Boeing. (Thanks, Doug, for restoring my faith in physicists.) He has written a book entitled: “Understanding Aerodynamics: Arguing for the Real Physics”. I have seen a different (and I believe original) subtitle that said something like “Common Misconceptions in Understanding Aerodynamics”. Frankly, I wished it had stayed that way to call a spade a spade and raise a flag about what’s going on. Anyway, it’s a good read for anyone really wanting a better understanding of aerodynamics and helps fill in many educational holes even at the college aero class level, since the explanations there often take you through the math..but not the physicality. While that did the job, it often left me with a lot of questions; I’m the kind of person who needs to link the abstract to the real to get it. (And I feel that connection is especially important when you’re trying to teach this stuff to general audiences.) That said, the book is a bit heavy for the layman, so you gotta be really wanting to get into the science to stick with it. You can get a good and somewhat lighter preview of what the book says by looking at the first 29 minutes or so of this video, which is a capture of a lecture he gave an engineering class about the book: https://www.youtube.com/watch?v=QKCK4lJLQHU.

This whole controversy (and it really shouldn’t be one) has been good for me in that it has forced me to re-examine what I learned, find the places where I had misconceptions, drill down into the various technical explanations for lift and drag and see where they were right or wrong. I am even revisiting the technical foundations of my education (physics, calculus, and differential equations) when necessary, and it’s a process I’m still continuing. I’ve got a ways to go before I’m going to feel like I’ve got it down; it’s a lot more work than I thought it would be, and there are days when I ask myself why I’m doing it. But I like both learning and teaching, the latter most of all. At my age, I take a strong look at anything I’m putting a lot of time into since the long term payoff for me isn’t clear; but if it helps me be a better pilot, engineer, or educator…helps me teach the right thing to one pilot or STEM student..then I am convinced it will be worth it, which is why I soldier on.